Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Front Physiol ; 13: 896425, 2022.
Article in English | MEDLINE | ID: mdl-35846011

ABSTRACT

The global burden of ischemic heart disease is burgeoning for both men and women. Although advances have been made, the need for new sex-specific therapies targeting key differences in cardiovascular disease outcomes in men and women remains. Mineralocorticoid receptor directed treatments have been successfully used for blood pressure control and heart failure management and represent a potentially valuable therapeutic option for ischemic cardiac events. Clinical and experimental data indicate that mineralocorticoid excess or inappropriate mineralocorticoid receptor (MR) activation exacerbates ischemic damage, and many of the intracellular response pathways activated in ischemia and subsequent reperfusion are regulated by MR. In experimental contexts, where MR are abrogated genetically or mineralocorticoid signaling is suppressed pharmacologically, ischemic injury is alleviated, and reperfusion recovery is enhanced. In the chronic setting, mineralocorticoid signaling induces fibrosis, oxidative stress, and inflammation, which can predispose to ischemic events and exacerbate post-myocardial infarct pathologies. Whilst a range of cardiac cell types are involved in mineralocorticoid-mediated regulation of cardiac function, cardiomyocyte-specific MR signaling pathways are key. Selective inhibition of cardiomyocyte MR signaling improves electromechanical resilience during ischemia and enhances contractile recovery in reperfusion. Emerging evidence suggests that the MR also contribute to sex-specific aspects of ischemic vulnerability. Indeed, MR interactions with sex steroid receptors may differentially regulate myocardial nitric oxide bioavailability in males and females, potentially determining sex-specific post-ischemic outcomes. There is hence considerable impetus for exploration of MR directed, cell specific therapies for both women and men in order to improve ischemic heart disease outcomes.

2.
Biofabrication ; 14(2)2022 01 24.
Article in English | MEDLINE | ID: mdl-34983029

ABSTRACT

Current preclinicalin vitroandin vivomodels of cardiac injury typical of myocardial infarction (MI, or heart attack) and drug induced cardiotoxicity mimic only a few aspects of these complex scenarios. This leads to a poor translation of findings from the bench to the bedside. In this study, we biofabricated for the first time advancedin vitromodels of MI and doxorubicin (DOX) induced injury by exposing cardiac spheroids (CSs) to pathophysiological changes in oxygen (O2) levels or DOX treatment. Then, contractile function and cell death was analyzed in CSs in control verses I/R and DOX CSs. For a deeper dig into cell death analysis, 3D rendering analyses and mRNA level changes of cardiac damage-related genes were compared in control verses I/R and DOX CSs. Overall,in vitroCSs recapitulated major features typical of thein vivoMI and drug induced cardiac damages, such as adapting intracellular alterations to O2concentration changes and incubation with cardiotoxic drug, mimicking the contraction frequency and fractional shortening and changes in mRNA expression levels for genes regulating sarcomere structure, calcium transport, cell cycle, cardiac remodelling and signal transduction. Taken together, our study supports the use of I/R and DOX CSs as advancedin vitromodels to study MI and DOX-induced cardiac damge by recapitulating their complexin vivoscenario.


Subject(s)
Myocardial Infarction , Myocardium , Cardiotoxicity/metabolism , Doxorubicin/pharmacology , Heart , Humans , Myocardium/metabolism , Myocytes, Cardiac/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
3.
Cardiovasc Res ; 116(14): 2197-2206, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33063089

ABSTRACT

The high mortality rate of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection is a critical concern of the coronavirus disease 2019 (COVID-19) pandemic. Strikingly, men account for the majority of COVID-19 deaths, with current figures ranging from 59% to 75% of total mortality. However, despite clear implications in relation to COVID-19 mortality, most research has not considered sex as a critical factor in data analysis. Here, we highlight fundamental biological differences that exist between males and females, and how these may make significant contributions to the male-biased COVID-19 mortality. We present preclinical evidence identifying the influence of biological sex on the expression and regulation of angiotensin-converting enzyme 2 (ACE2), which is the main receptor used by SARS-CoV-2 to enter cells. However, we note that there is a lack of reports showing that sexual dimorphism of ACE2 expression exists and is of functional relevance in humans. In contrast, there is strong evidence, especially in the context of viral infections, that sexual dimorphism plays a central role in the genetic and hormonal regulation of immune responses, both of the innate and the adaptive immune system. We review evidence supporting that ineffective anti-SARS-CoV-2 responses, coupled with a predisposition for inappropriate hyperinflammatory responses, could provide a biological explanation for the male bias in COVID-19 mortality. A prominent finding in COVID-19 is the increased risk of death with pre-existing cardiovascular comorbidities, such as hypertension, obesity, and age. We contextualize how important features of sexual dimorphism and inflammation in COVID-19 may exhibit a reciprocal relationship with comorbidities, and explain their increased mortality risk. Ultimately, we demonstrate that biological sex is a fundamental variable of critical relevance to our mechanistic understanding of SARS-CoV-2 infection and the pursuit of effective COVID-19 preventative and therapeutic strategies.


Subject(s)
COVID-19/mortality , Cardiovascular Diseases/mortality , Health Status Disparities , Inflammation/mortality , SARS-CoV-2/immunology , Animals , COVID-19/diagnosis , COVID-19/immunology , COVID-19/virology , Cardiovascular Diseases/diagnosis , Cardiovascular Diseases/virology , Comorbidity , Female , Host-Pathogen Interactions , Humans , Inflammation/diagnosis , Inflammation/immunology , Inflammation/virology , Male , Prognosis , Risk Assessment , Risk Factors , Sex Characteristics , Sex Factors
6.
Sci Rep ; 8(1): 2346, 2018 02 05.
Article in English | MEDLINE | ID: mdl-29402990

ABSTRACT

Diabetic cardiomyopathy is a distinct pathology characterized by early emergence of diastolic dysfunction. Increased cardiovascular risk associated with diabetes is more marked for women, but an understanding of the role of diastolic dysfunction in female susceptibility to diabetic cardiomyopathy is lacking. To investigate the sex-specific relationship between systemic diabetic status and in vivo occurrence of diastolic dysfunction, diabetes was induced in male and female mice by streptozotocin (5x daily i.p. 55 mg/kg). Echocardiography was performed at 7 weeks post-diabetes induction, cardiac collagen content assessed by picrosirius red staining, and gene expression measured using qPCR. The extent of diabetes-associated hyperglycemia was more marked in males than females (males: 25.8 ± 1.2 vs 9.1 ± 0.4 mM; females: 13.5 ± 1.5 vs 8.4 ± 0.4 mM, p < 0.05) yet in vivo diastolic dysfunction was evident in female (E/E' 54% increase, p < 0.05) but not male diabetic mice. Cardiac structural abnormalities (left ventricular wall thinning, collagen deposition) were similar in male and female diabetic mice. Female-specific gene expression changes in glucose metabolic and autophagy-related genes were evident. This study demonstrates that STZ-induced diabetic female mice exhibit a heightened susceptibility to diastolic dysfunction, despite exhibiting a lower extent of hyperglycemia than male mice. These findings highlight the importance of early echocardiographic screening of asymptomatic prediabetic at-risk patients.


Subject(s)
Blood Pressure , Diabetes Mellitus, Experimental/physiopathology , Diabetic Cardiomyopathies/physiopathology , Hyperglycemia/physiopathology , Animals , Autophagy , Diabetes Mellitus, Experimental/complications , Female , Glucose/metabolism , Hyperglycemia/etiology , Male , Mice, Inbred C57BL , Sex Characteristics , Streptozocin/administration & dosage , Ventricular Remodeling
7.
Endocrinology ; 158(9): 2906-2917, 2017 09 01.
Article in English | MEDLINE | ID: mdl-28911177

ABSTRACT

Activation of the mineralocorticoid receptor (MR) promotes inflammation, fibrosis, and hypertension. Clinical and experimental studies show that MR antagonists have significant therapeutic benefit for all-cause heart failure; however, blockade of renal MRs limits their widespread use. Identification of key downstream signaling mechanisms for the MR in the cardiovascular system may enable development of targeted MR antagonists with selectivity for pathological MR signaling and lower impact on physiological renal electrolyte handling. One candidate pathway is the circadian clock, the dysregulation of which is associated with cardiovascular diseases. We have previously shown that the circadian gene Per2 is dysregulated in hearts with selective deletion of cardiomyocyte MR. We therefore investigated MR-mediated cardiac inflammation and fibrosis in mice that lack normal regulation and oscillation of the circadian clock in peripheral tissues, that is, CLOCKΔ19 mutant mice. The characteristic cardiac inflammatory/fibrotic response to a deoxycorticosterone (DOC)/salt for 8 weeks was significantly blunted in CLOCKΔ19 mice when compared with wild-type mice, despite a modest increase at "baseline" for fibrosis and macrophage number in CLOCKΔ19 mice. In contrast, cardiac hypertrophy in response to DOC/salt was significantly greater in CLOCKΔ19 vs wild-type mice. Markers for renal inflammation and fibrosis were similarly attenuated in the CLOCKΔ19 mice given DOC/salt. Moreover, increased CLOCK expression in H9c2 cardiac cells enhanced MR-mediated transactivation of Per1, suggesting cooperative signaling between these transcription factors. This study demonstrates that the full development of MR-mediated cardiac inflammation and fibrosis is dependent on intact signaling by the circadian protein CLOCK.


Subject(s)
CLOCK Proteins/genetics , Desoxycorticosterone/pharmacology , Heart/drug effects , Myocarditis/chemically induced , Myocardium/pathology , Sodium Chloride/pharmacology , Animals , CLOCK Proteins/physiology , Cells, Cultured , Fibrosis/chemically induced , Fibrosis/genetics , Male , Mice , Mice, Inbred CBA , Mice, Transgenic , Rats , Receptors, Mineralocorticoid/physiology , Signal Transduction/drug effects , Signal Transduction/genetics
8.
J Mol Cell Cardiol ; 112: 8-15, 2017 11.
Article in English | MEDLINE | ID: mdl-28859848

ABSTRACT

Nitric oxide (NO) is an important regulator of cardiac function and plays a key role in ischemic cardioprotection. The role of chronic NO deficiency in coordinating ischemic vulnerability in female myocardium has not been established. The aim of this study was to determine the influence of chronic in vivo NO synthase inhibition in modulating ex vivo ischemia-reperfusion responses in female hearts (relative to males). Mice were subjected to l-NAME (l-NG-Nitroarginine-methyl-ester) treatment in vivo for 8weeks. Cardiac fibrotic, inflammatory and cardiomyocyte Ca2+ handling related gene expression changes were assessed. Hearts were Langendorff-perfused, subjected to 20min global ischemia with 45min reperfusion. In response to this moderate ex vivo ischemic insult, hearts derived from l-NAME treated female animals exhibited increased incidence of reperfusion arrhythmias, diastolic abnormality and reduced contractile recovery in reperfusion. This differential response was observed even though baseline performance of hearts from l-NAME treated animals was not different to vehicle controls, myocardial inflammatory and fibrotic indices were similar in males and females and the systolic blood pressure effect of l-NAME administration was equivalent in both sexes. Evaluation of a subgroup of mice with cardiomyocyte specific mineralocorticoid receptor deletion suggests involvement of this receptor in NO-deficiency mediated responses. To examine underlying pre-disposing mechanisms, expression of a panel of candidate genes encoding proteins involved in electromechanical homeostasis (particularly relevant to ischemic challenge) was evaluated in normoxic myocardial tissues from the l-NAME- and vehicle-treated animals. Analysis revealed that l-NAME treatment in females selectively regulated expression of genes related directly and indirectly to cardiomyocyte Ca2+ handling in a manner consistent with destabilization of Ca2+ homeostasis and arrhythmogenesis. Our investigation provides new insight into the role of sustained decrease in NO bioavailability in determining distinctive female cardiac vulnerability to ischemic challenge.


Subject(s)
Heart/physiopathology , Myocardial Ischemia/physiopathology , Nitric Oxide/deficiency , Recovery of Function , Analysis of Variance , Animals , Arrhythmias, Cardiac/complications , Arrhythmias, Cardiac/pathology , Arrhythmias, Cardiac/physiopathology , Blood Pressure/drug effects , Female , Gene Expression Regulation/drug effects , Inflammation/genetics , Male , Mice , Myocardial Ischemia/complications , Myocardial Ischemia/pathology , Myocardial Reperfusion Injury/complications , Myocardial Reperfusion Injury/pathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , NG-Nitroarginine Methyl Ester/pharmacology , Recovery of Function/drug effects , Systole/drug effects
10.
Am J Physiol Heart Circ Physiol ; 311(3): H768-80, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27422989

ABSTRACT

A definitive understanding of the role of dietary lipids in determining cardioprotection (or cardiodetriment) has been elusive. Randomized trial findings have been variable and sex specificity of dietary interventions has not been determined. In this investigation the sex-selective cardiac functional effects of three diets enriched by omega-3 or omega-6 polyunsaturated fatty acids (PUFA) or enriched to an equivalent extent in saturated fatty acid components were examined in rats after an 8-wk treatment period. In females the myocardial membrane omega-6:omega-3 PUFA ratio was twofold higher than males in the omega-6 diet replacement group. In diets specified to be high in omega-3 PUFA or in saturated fat, this sex difference was not apparent. Isolated cardiomyocyte and heart Langendorff perfusion experiments were performed, and molecular measures of cell viability were assessed. Under basal conditions the contractile performance of omega-6 fed female cardiomyocytes and hearts was reduced compared with males. Omega-6 fed females exhibited impaired systolic resilience after ischemic insult. This response was associated with increased postischemia necrotic cell damage evaluated by coronary lactate dehydrogenase during reperfusion in omega-6 fed females. Cardiac and myocyte functional parameters were not different between omega-3 and saturated fat dietary groups and within these groups there were no discernible sex differences. Our data provide evidence at both the cardiac and cardiomyocyte levels that dietary saturated fatty acid intake replacement with an omega-6 (but not omega-3) enriched diet has selective adverse cardiac effect in females. This finding has potential relevance in relation to women, cardiac risk, and dietary management.


Subject(s)
Fatty Acids, Omega-3/pharmacology , Fatty Acids, Omega-6/pharmacology , Fatty Acids/pharmacology , Heart/drug effects , Myocardial Ischemia/metabolism , Myocardium/metabolism , Myocytes, Cardiac/drug effects , Recovery of Function/drug effects , Animals , Calcium/metabolism , Cell Membrane/metabolism , Cell Survival , Dietary Supplements , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Female , Heart/physiopathology , Immunoblotting , Isolated Heart Preparation , L-Lactate Dehydrogenase/drug effects , L-Lactate Dehydrogenase/metabolism , Male , Myocardial Contraction/drug effects , Myocardial Ischemia/physiopathology , Myocardial Reperfusion Injury/metabolism , Myocardial Reperfusion Injury/physiopathology , Myocardium/pathology , Myocytes, Cardiac/metabolism , Necrosis , Rats
11.
Hypertension ; 66(5): 970-7, 2015 Nov.
Article in English | MEDLINE | ID: mdl-26351032

ABSTRACT

Loss of mineralocorticoid receptor signaling selectively in cardiomyocytes can ameliorate cardiac fibrotic and inflammatory responses caused by excess mineralocorticoids. The aim of this study was to characterize the role of cardiomyocyte mineralocorticoid receptor signaling in ischemia-reperfusion injury and recovery and to identify a role of mineralocorticoid receptor modulation of cardiac function. Wild-type and cardiomyocyte mineralocorticoid receptor knockout mice (8 weeks) were uninephrectomized and maintained on (1) high salt (0.9% NaCl, 0.4% KCl) or (2) high salt plus deoxycorticosterone pellet (0.3 mg/d, 0.9% NaCl, 0.4% KCl). After 8 weeks of treatment, hearts were isolated and subjected to 20 minutes of global ischemia plus 45 minutes of reperfusion. Mineralocorticoid excess increased peak contracture during ischemia regardless of genotype. Recovery of left ventricular developed pressure and rates of contraction and relaxation post ischemia-reperfusion were greater in knockout versus wild-type hearts. The incidence of arrhythmic activity during early reperfusion was significantly higher in wild-type than in knockout hearts. Levels of autophosphorylated Ca(2+)/calmodulin protein kinase II (Thr287) were elevated in hearts from wild-type versus knockout mice and associated with increased sodium hydrogen exchanger-1 expression. These findings demonstrate that cardiomyocyte-specific mineralocorticoid receptor-dependent signaling contributes to electromechanical vulnerability in acute ischemia-reperfusion via a mechanism involving Ca(2+)/calmodulin protein kinase II activation in association with upstream alteration in expression regulation of the sodium hydrogen exchanger-1.


Subject(s)
Heart/physiopathology , Myocardial Reperfusion Injury/physiopathology , Myocytes, Cardiac/physiology , Receptors, Mineralocorticoid/physiology , Recovery of Function/physiology , Signal Transduction/physiology , Animals , Calcium/physiology , Calcium-Calmodulin-Dependent Protein Kinase Type 2/physiology , Disease Models, Animal , Female , Male , Mice , Mice, Knockout , Myocardial Contraction/physiology , Receptors, Estrogen/physiology , Receptors, Mineralocorticoid/deficiency , Receptors, Mineralocorticoid/genetics , Sex Factors , Sodium-Hydrogen Exchangers/physiology
12.
J Mol Cell Cardiol ; 75: 162-73, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25066697

ABSTRACT

Previous studies have shown that ventricular myocytes from female rats have smaller contractions and Ca(2+) transients than males. As cardiac contraction is regulated by the cyclic adenosine monophosphate (cAMP)/protein kinase A (PKA) pathway, we hypothesized that sex differences in cAMP contribute to differences in Ca(2+) handling. Ca(2+) transients (fura-2) and ionic currents were measured simultaneously (37°C, 2Hz) in ventricular myocytes from adult male and female C57BL/6 mice. Under basal conditions, diastolic Ca(2+), sarcoplasmic reticulum (SR) Ca(2+) stores, and L-type Ca(2+) current did not differ between the sexes. However, female myocytes had smaller Ca(2+) transients (26% smaller), Ca(2+) sparks (6% smaller), and excitation-contraction coupling gain in comparison to males (23% smaller). Interestingly, basal levels of intracellular cAMP were lower in female myocytes (0.7±0.1 vs. 1.7±0.2fmol/µg protein; p<0.001). Importantly, PKA inhibition (2µM H-89) eliminated male-female differences in Ca(2+) transients and gain, as well as Ca(2+) spark amplitude. Western blots showed that PKA inhibition also reduced the ratio of phospho:total RyR2 in male hearts, but not in female hearts. Stimulation of cAMP production with 10µM forskolin abolished sex differences in cAMP levels, as well as differences in Ca(2+) transients, sparks, and gain. To determine if the breakdown of cAMP differed between the sexes, phosphodiesterase (PDE) mRNA levels were measured. PDE3 expression was similar in males and females, but PDE4B expression was higher in female ventricles. The inhibition of cAMP breakdown by PDE4 (10µM rolipram) abolished differences in Ca(2+) transients and gain. These findings suggest that female myocytes have lower levels of basal cAMP due, in part, to higher expression of PDE4B. Lower cAMP levels in females may attenuate PKA phosphorylation of Ca(2+) handling proteins in females, and may limit positive inotropic responses to stimulation of the cAMP/PKA pathway in female hearts.


Subject(s)
Calcium/metabolism , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Heart Ventricles/cytology , Myocytes, Cardiac/metabolism , Sarcoplasmic Reticulum/metabolism , Sex Characteristics , Signal Transduction , Adenylyl Cyclases/metabolism , Animals , Calcium Signaling , Cyclic AMP-Dependent Protein Kinases/antagonists & inhibitors , Cyclic Nucleotide Phosphodiesterases, Type 4/genetics , Cyclic Nucleotide Phosphodiesterases, Type 4/metabolism , Diastole , Enzyme Activation , Excitation Contraction Coupling , Female , Intracellular Space/metabolism , Ion Channel Gating , Male , Mice, Inbred C57BL , Phosphorylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Ryanodine Receptor Calcium Release Channel/metabolism
13.
Clin Sci (Lond) ; 125(9): 409-21, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23829554

ABSTRACT

MR (mineralocorticoid receptor) activation in the heart plays a central role in the development of cardiovascular disease, including heart failure. The MR is present in many cell types within the myocardium, including cardiomyocytes, macrophages and the coronary vasculature. The specific role of the MR in each of these cell types in the initiation and progression of cardiac pathophysiology is not fully understood. Cardiomyocyte MRs are increasingly recognized to play a role in regulating cardiac function, electrical conduction and fibrosis, through direct signal mediation and through paracrine MR-dependent activity. Although MR blockade in the heart is an attractive therapeutic option for the treatment of heart failure and other forms of heart disease, current antagonists are limited by side effects owing to MR inactivation in other tissues (including renal targets). This has led to increased efforts to develop therapeutics that are more selective for cardiac MRs and which may have reduced the occurrence of side effects in non-cardiac tissues. A major clinical consideration in the treatment of cardiovascular disease is of the differences between males and females in the incidence and outcomes of cardiac events. There is clinical evidence that female sensitivity to endogenous MRs is more pronounced, and experimentally that MR-targeted interventions may be more efficacious in females. Given that sex differences have been described in MR signalling in a range of experimental settings and that the MR and oestrogen receptor pathways share some common signalling intermediates, it is becoming increasingly apparent that the mechanisms of MRs need to be evaluated in a sex-selective manner. Further research targeted to identify sex differences in cardiomyocyte MR activation and signalling processes has the potential to provide the basis for the development of cardiac-specific MR therapies that may also be sex-specific.


Subject(s)
Myocytes, Cardiac/physiology , Receptors, Mineralocorticoid/physiology , Signal Transduction/physiology , Animals , Arrhythmias, Cardiac/physiopathology , Cardiovascular Diseases/drug therapy , Female , Fibrosis , Heart Failure/drug therapy , Humans , Macrophages/physiology , Male , Mineralocorticoid Receptor Antagonists/therapeutic use , Myocardial Contraction/physiology , Myocardial Ischemia/physiopathology , Myocardium/metabolism , Myocardium/pathology , Oxidative Stress/physiology , Sex Factors
14.
Hypertension ; 60(6): 1443-50, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23108646

ABSTRACT

Because the role of mineralocorticoid receptors in specific cell types in cardiac remodeling remains unknown, we have compared cardiac responses with deoxycorticosterone/salt in cardiomyocyte mineralocorticoid receptor-null (MyoMRKO) and wild-type (WT) mice at 8 days and 8 weeks. No differences in cardiac function between untreated WT and MyoMRKO mice were found, whereas profibrotic markers were reduced in MyoMRKO hearts at baseline. At 8 days, MyoMRKO showed monocyte/macrophage recruitment equivalent to WT mice in response to deoxycorticosterone/salt but a suppression of markers of fibrosis compared with WT. At 8 weeks, MyoMRKO mice showed no deoxycorticosterone/salt-induced increase in inflammatory cell infiltration and collagen deposition or in proinflammatory gene expression. Although some profibrotic markers were equivalently increased in both genotypes, MyoMRKO mice also showed increased baseline levels of mRNA and protein for the transforming growth factor-ß/connective tissue growth factor inhibitor decorin compared with WT that was accompanied by higher levels of matrix metalloproteinase 2/matrix metalloproteinase 9 activity. These data point to a direct role for cardiomyocyte mineralocorticoid receptor in both deoxycorticosterone/salt-induced tissue inflammation and remodeling and suggest potential mechanisms for the cardioprotective effects of selective mineralocorticoid receptor blockade in cardiomyocytes that may involve regulation of matrix metalloproteinase 2/matrix metalloproteinase 9 activity and the transforming growth factor-ß-connective tissue growth factor profibrotic pathway.


Subject(s)
Desoxycorticosterone/pharmacology , Fibrosis/metabolism , Inflammation/metabolism , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Receptors, Mineralocorticoid/metabolism , Animals , Fibrosis/chemically induced , Fibrosis/pathology , Inflammation/chemically induced , Inflammation/pathology , Male , Matrix Metalloproteinase 2/metabolism , Matrix Metalloproteinase 9/metabolism , Mice , Mice, Knockout , Myocardium/pathology , Myocytes, Cardiac/pathology , Receptors, Mineralocorticoid/genetics , Sodium Chloride, Dietary/metabolism , Ventricular Remodeling/physiology
15.
Endocrinology ; 153(7): 3416-25, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22653557

ABSTRACT

Mineralocorticoid receptor (MR) activation promotes the development of cardiac fibrosis and heart failure. Clinical evidence demonstrates that MR antagonism is protective even when plasma aldosterone levels are not increased. We hypothesize that MR activation in macrophages drives the profibrotic phenotype in the heart even when aldosterone levels are not elevated. The aim of the present study was to establish the role of macrophage MR signaling in mediating cardiac tissue remodeling caused by nitric oxide (NO) deficiency, a mineralocorticoid-independent insult. Male wild-type (MRflox/flox) and macrophage MR-knockout (MRflox/flox/LysMCre/+; mac-MRKO) mice were uninephrectomized, maintained on 0.9% NaCl drinking solution, with either vehicle (control) or the nitric oxide synthase (NOS) inhibitor NG-nitro-l-arginine methyl ester (L-NAME; 150 mg/kg/d) for 8 wk. NO deficiency increased systolic blood pressure at 4 wk in wild-type L-NAME/salt-treated mice compared with all other groups. At 8 wk, systolic blood pressure was increased above control in both L-NAME/salt treated wild-type and mac-MRKO mice by approximately 28 mm Hg by L-NAME/salt. Recruitment of macrophages was increased 2- to 3-fold in both L-NAME/salt treated wild-type and mac-MRKO. Inducible NOS positive macrophage infiltration and TNFα mRNA expression was greater in wild-type L-NAME/salt-treated mice compared with mac-MRKO, demonstrating that loss of MR reduces M1 phenotype. mRNA levels for markers of vascular inflammation and oxidative stress (NADPH oxidase 2, p22phox, intercellular adhesion molecule-1, G protein-coupled chemokine receptor 5) were similar in treated wild-type and mac-MRKO mice compared with control groups. In contrast, L-NAME/salt treatment increased interstitial collagen deposition in wild-type by about 33% but not in mac-MRKO mice. mRNA levels for connective tissue growth factor and collagen III were also increased above control treatment in wild-type (1.931 ± 0.215 vs. 1 ± 0.073) but not mac-MRKO mice (1.403 ± 0.150 vs. 1.286 ± 0.255). These data demonstrate that macrophage MR are necessary for the translation of inflammation and oxidative stress into interstitial and perivascular fibrosis after NO deficiency, even when plasma aldosterone is not elevated.


Subject(s)
Aldosterone/metabolism , Fibrosis/metabolism , Heart/physiology , Macrophages/cytology , Receptors, Mineralocorticoid/metabolism , Angiotensin Amide/metabolism , Animals , Hypertension/metabolism , Macrophages/metabolism , Male , Mice , Mice, Knockout , Models, Biological , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Synthase/metabolism , Phenotype , Signal Transduction , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...